Cytological Observations of the Large Symbiotic Foraminifer Amphisorus kudakajimensis Using Calcein Acetoxymethyl Ester

نویسندگان

  • Yoshikazu Ohno
  • Kazuhiko Fujita
  • Takashi Toyofuku
  • Takashi Nakamaura
چکیده

Large benthic foraminifera are unicellular calcifying reef organisms that can form symbiotic relationships with a range of different microalgae. However, the cellular functions, such as symbiosis and calcification, and other aspects of cellular physiology in large benthic foraminifera are not fully understood. Amphisorus kudakajimensis was used as a model to determine the detailed cellular characteristics of large benthic foraminifera. We used calcein acetoxymethyl ester (calcein AM) as a fluorescent indicator for live confocal imaging. We demonstrated that calcein AM is a useful fluorescent indicator to stain the fine network of reticulopodia and the cytoplasm in living A. kudakajimensis. We showed that at least two types of reticulopodia exist in A. kudakajimensis: the straight bundle of reticulopodia that spreads from the aperture and the fine reticulopodia along the surface of the aperture and chamber walls. The cytoplasm in outer chambers was highly branched and contained a few dinoflagellates. In contrast, the inner chamberlets contained condensed cytoplasm and many dinoflagellates, suggesting that the cytoplasm of A. kudakajimensis performs different functions based on its location within the large test. Our confocal detailed image analysis provides real-time cellular morphology and cell physiology of living foraminifera.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-resolved, single-cell analysis of induced and programmed cell death via non-invasive propidium iodide and counterstain perfusion

Conventional propidium iodide (PI) staining requires the execution of multiple steps prior to analysis, potentially affecting assay results as well as cell vitality. In this study, this multistep analysis method has been transformed into a single-step, non-toxic, real-time method via live-cell imaging during perfusion with 0.1 μM PI inside a microfluidic cultivation device. Dynamic PI staining ...

متن کامل

ATP-dependent efflux of calcein by the multidrug resistance protein (MRP): no inhibition by intracellular glutathione depletion.

In this study we report that the multidrug resistance protein (MRP) transports calcein from the cytoplasmic compartment of tumor cells, in contrast to P-glycoprotein which transports calcein acetoxymethyl ester from the plasmamembrane. The transport of calcein by MRP is ATP-dependent and is inhibited by probenecid and vincristine. Intracellular glutathione (GSH) depletion which occurred when ce...

متن کامل

Non-Invasive Microbial Metabolic Activity Sensing at Single Cell Level by Perfusion of Calcein Acetoxymethyl Ester

Phase contrast microscopy cannot give sufficient information on bacterial metabolic activity, or if a cell is dead, it has the fate to die or it is in a viable but non-growing state. Thus, a reliable sensing of the metabolic activity helps to distinguish different categories of viability. We present a non-invasive instantaneous sensing method using a fluorogenic substrate for online monitoring ...

متن کامل

Does the calcein-AM method assay the total cellular 'labile iron pool' or only a fraction of it?

The calcein-AM (calcein-acetoxymethyl ester) method is a widely used technique that is supposed to assay the intracellular 'labile iron pool' (LIP). When cells in culture are exposed to this ester, it passes the plasma membrane and reacts with cytosolic unspecific esterases. One of the reaction products, calcein, is a fluorochrome and a hydrophilic alcohol to which membranes are non-permeable a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016